12.3 The F Distribution and the F-Ratio - Introductory Business Statistics 2e | OpenStax (2024)

The distribution used for the hypothesis test is a new one. It is called the F distribution, invented by George Snedecor but named in honor of Sir Ronald Fisher, an English statistician. The F statistic is a ratio (a fraction). There are two sets of degrees of freedom; one for the numerator and one for the denominator.

For example, if F follows an F distribution and the number of degrees of freedom for the numerator is four, and the number of degrees of freedom for the denominator is ten, then F ~ F4,10.

To calculate the F ratio, two estimates of the variance are made.

  1. Variance between samples: An estimate of σ2 that is the variance of the sample means multiplied by n (when the sample sizes are the same.). If the samples are different sizes, the variance between samples is weighted to account for the different sample sizes. The variance is also called variation due to treatment or explained variation.
  2. Variance within samples: An estimate of σ2 that is the average of the sample variances (also known as a pooled variance). When the sample sizes are different, the variance within samples is weighted. The variance is also called the variation due to error or unexplained variation.
  • SSbetween = the sum of squares that represents the variation among the different samples
  • SSwithin = the sum of squares that represents the variation within samples that is due to chance.

To find a "sum of squares" means to add together squared quantities that, in somecases, may be weighted. We used sum of squares to calculate the sample variance andthe sample standard deviation in Descriptive Statistics.

MS means "mean square." MSbetween is the variance between groups, and MSwithin is the variance within groups.

Calculation of Sum of Squares and Mean Square

  • k = the number of different groups
  • nj = the size of the jth group
  • sj = the sum of the values in the jth group
  • n = total number of all the values combined (totalsamplesize: ∑nj)
  • x = one value: ∑x = ∑sj
  • Sum of squares of all values from every group combined: ∑x2
  • Between group variability: SStotal = ∑x2( x2)n( x2)n
  • Total sum of squares: ∑x2(x)2n(x)2n
  • Explained variation: sum of squares representing variation among the different samples:
    SSbetween = [ (sj)2nj ](sj)2n[ (sj)2nj ](sj)2n
  • Unexplained variation: sum of squares representing variation within samples due to chance: SSwithin=SStotalSSbetweenSSwithin=SStotalSSbetween
  • df's for different groups (df's for the numerator): df = k – 1
  • Equation for errors within samples (df's for the denominator): dfwithin = nk
  • Mean square (variance estimate) explained by the different groups: MSbetween = SSbetweendfbetweenSSbetweendfbetween
  • Mean square (variance estimate) that is due to chance (unexplained): MSwithin = SSwithindfwithinSSwithindfwithin

MSbetween and MSwithin can be written as follows:

  • MSbetween=SSbetweendfbetween=SSbetweenk1MSbetween=SSbetweendfbetween=SSbetweenk1
  • MSwithin=SSwithindfwithin=SSwithinnkMSwithin=SSwithindfwithin=SSwithinnk

The one-way ANOVA test depends on the fact that MSbetween can be influenced by population differences among means of the several groups. Since MSwithin compares values of each group to its own group mean, the fact that group means might be different does not affect MSwithin.

The null hypothesis says that all groups are samples from populations having the same normal distribution. The alternate hypothesis says that at least two of the sample groups come from populations with different normal distributions. If the null hypothesis is true, MSbetween and MSwithin should both estimate the same value.

NOTE

The null hypothesis says that all the group population means are equal. The hypothesis of equal means implies that the populations have the same normal distribution, because it is assumed that the populations are normal and that they have equal variances.

F-Ratio or F Statistic F=MSbetweenMSwithinF=MSbetweenMSwithin

If MSbetween and MSwithin estimate the same value (following the belief that H0 is true), then the F-ratio should be approximately equal to one. Mostly, just sampling errors would contribute to variations away from one. As it turns out, MSbetween consists of the population variance plus a variance produced from the differences between the samples. MSwithin is an estimate of the population variance. Since variances are always positive, if the null hypothesis is false, MSbetween will generally be larger than MSwithin.Then the F-ratio will be larger than one. However, if the population effect is small, it is not unlikely that MSwithin will be larger in a given sample.

The foregoing calculations were done with groups of different sizes. If the groups are the same size, the calculations simplify somewhat and the F-ratio can be written as:

F-Ratio Formula when the groups are the same size F=nsx2s2pooledF=nsx2s2pooled

where ...

  • n = the sample size
  • dfnumerator = k – 1
  • dfdenominator = nk
  • s2 pooled = the mean of the sample variances (pooled variance)
  • sx2sx2 = the variance of the sample means

Data are typically put into a table for easy viewing. One-Way ANOVA results are often displayed in this manner by computer software.

Source of variationSum of squares (SS)Degrees of freedom (df)Mean square (MS)F
Factor
(Between)
SS(Factor)k – 1MS(Factor) = SS(Factor)/(k – 1)F = MS(Factor)/MS(Error)
Error
(Within)
SS(Error)nkMS(Error) = SS(Error)/(nk)
TotalSS(Total)n – 1

Table 12.3

Example 12.2

Three different diet plans are to be tested for mean weight loss. The entries in the table are the weight losses for the different plans. The one-way ANOVA results are shown in Table 12.4.

Plan 1: n1 = 4Plan 2: n2 = 3Plan 3: n3 = 3
53.58
4.574
43.5
34.5

Table 12.4

s1 = 16.5, s2 =15, s3 = 15.5

Following are the calculations needed to fill in the one-way ANOVA table. The table is used to conduct a hypothesis test.

SS(between)=[ (sj)2nj ](sj)2nSS(between)=[ (sj)2nj ](sj)2n

=s124+s223+s323(s1+s2+s3)210=s124+s223+s323(s1+s2+s3)210

where n1 = 4, n2 = 3, n3 = 3 and n = n1 + n2 + n3 = 10

=(16.5)24+(15)23+(15.5)23(16.5+15+15.5)210=(16.5)24+(15)23+(15.5)23(16.5+15+15.5)210

SS(between)=2.2458SS(between)=2.2458

S(total)=x2(x)2nS(total)=x2(x)2n

=(52+4.52+42+32+3.52+72+4.52+82+42+3.52)=(52+4.52+42+32+3.52+72+4.52+82+42+3.52)

(5+4.5+4+3+3.5+7+4.5+8+4+3.5)210(5+4.5+4+3+3.5+7+4.5+8+4+3.5)210

=24447210=244220.9=24447210=244220.9

SS(total)=23.1SS(total)=23.1

SS(within)=SS(total)SS(between)SS(within)=SS(total)SS(between)

=23.12.2458=23.12.2458

SS(within)=20.8542SS(within)=20.8542

Source of variationSum of squares (SS)Degrees of freedom (df)Mean square (MS)F
Factor
(Between)
SS(Factor)
= SS(Between)
= 2.2458
k – 1
= 3 groups – 1
= 2
MS(Factor)
= SS(Factor)/(k – 1)
= 2.2458/2
= 1.1229
F =
MS(Factor)/MS(Error)
= 1.1229/2.9792
= 0.3769
Error
(Within)
SS(Error)
= SS(Within)
= 20.8542
nk
= 10 total data – 3 groups
= 7
MS(Error)
= SS(Error)/(nk)
= 20.8542/7
= 2.9792
TotalSS(Total)
= 2.2458 + 20.8542
= 23.1
n – 1
= 10 total data – 1
= 9

Table 12.5

Try It 12.2

As part of an experiment to see how different types of soil cover would affect slicing tomato production, Marist College students grew tomato plants under different soil cover conditions. Groups of three plants each had one of the following treatments

  • bare soil
  • a commercial ground cover
  • black plastic
  • straw
  • compost

All plants grew under the same conditions and were the same variety. Students recorded the weight (in grams) of tomatoes produced by each of the n = 15 plants:

Bare: n1 = 3Ground Cover: n2 = 3Plastic: n3 = 3Straw: n4 = 3 Compost: n5 = 3
2,6255,3486,5837,2856,277
2,9975,6828,5606,8977,818
4,9155,4823,8309,2308,677

Table 12.6


Create the one-way ANOVA table.

The one-way ANOVA hypothesis test is always right-tailed because larger F-values are way out in the right tail of the F-distribution curve and tend to make us reject H0.

Example 12.3

Problem

Let’s return to the slicing tomato exercise in Try It 12.2. The means of the tomato yields under the five mulching conditions are represented by μ1, μ2, μ3, μ4, μ5. We will conduct a hypothesis test to determine if all means are the same or at least one is different. Using a significance level of 5%, test the null hypothesis that there is no difference in mean yields among the five groups against the alternative hypothesis that at least one mean is different from the rest.

Solution

The null and alternative hypotheses are:

H0: μ1 = μ2 = μ3 = μ4 = μ5

Ha: μi ≠ μj some i ≠ j

The one-way ANOVA results are shown in Table 12.7

Source of variationSum of squares (SS)Degrees of freedom (df)Mean square (MS)F
Factor (Between)36,648,5615 – 1 = 4 36,648,5614=9,162,14036,648,5614=9,162,140 9,162,1402,044,672.6=4.48109,162,1402,044,672.6=4.4810
Error (Within)20,446,72615 – 5 = 10 20,446,72610=2,044,672.620,446,72610=2,044,672.6
Total57,095,28715 – 1 = 14

Table 12.7

Distribution for the test: F4,10

df(num) = 5 – 1 = 4

df(denom) = 15 – 5 = 10

Test statistic: F = 4.4810

12.3 The F Distribution and the F-Ratio - Introductory Business Statistics 2e | OpenStax (1)

Figure 12.4

Probability Statement: p-value = P(F > 4.481) = 0.0248.

Compare α and the p-value: α = 0.05, p-value = 0.0248

Make a decision: Since α > p-value, we cannot accept H0.

Conclusion: At the 5% significance level, we have reasonably strong evidence that differences in mean yields for slicing tomato plants grown under different mulching conditions are unlikely to be due to chance alone. We may conclude that at least some of mulches led to different mean yields.

Try It 12.3

There are multiple variants of the virus that causes COVID-19. The length of hospital stays for patients afflicted with various strains of COVID-19 is shown in Table 12.8.

Delta StrainOmicron StrainAlpha StrainGamma StrainBeta Strain
13.911.718.216.99.3
14.915.114.612.815.8
16.89.910.111.216.4

Table 12.8

Test whether the mean length of hospital stay is the same or different for the various strains of COVID-19. Construct the ANOVA table, find the p-value, and state your conclusion. Use a 5% significance level.

Example 12.4

Four sororities took a random sample of sisters regarding their grade means for the past term. The results are shown in Table 12.9.

Sorority 1Sorority 2Sorority 3Sorority 4
2.172.632.633.79
1.85 1.77 3.78 3.45
2.83 3.25 4.00 3.08
1.69 1.86 2.55 2.26
3.33 2.21 2.45 3.18

Table 12.9 Mean grades for four sororities

Problem

Using a significance level of 1%, is there a difference in mean grades among thesororities?

Solution

Let μ1, μ2, μ3, μ4 be the population means of the sororities. Remember that the null hypothesis claims that the sorority groups are from the same normal distribution. The alternate hypothesis says that at least two of the sorority groups come from populations with different normal distributions. Notice that the four sample sizes are each five.

NOTE

This is an example of a balanced design, because each factor (i.e., sorority) has the same number of observations.

H0: μ1=μ2=μ3=μ4μ1=μ2=μ3=μ4

Ha: Not all of the means μ1,μ2,μ3,μ4μ1,μ2,μ3,μ4are equal.

Distribution for the test: F3,16

where k = 4 groups and n = 20 samples in total

df(num)= k – 1 = 4 – 1 = 3

df(denom) = nk = 20 – 4 = 16

Calculate the test statistic: F = 2.23

Graph:

12.3 The F Distribution and the F-Ratio - Introductory Business Statistics 2e | OpenStax (2)

Figure 12.5

Probability statement: p-value = P(F > 2.23) = 0.1241

Compare α and the p-value: α = 0.01
p-value = 0.1241
α < p-value

Make a decision: Since α < p-value, you cannot reject H0.

Conclusion: There is not sufficient evidence to conclude that there is a difference among the mean grades for the sororities.

Try It 12.4

Four sports teams took a random sample of players regarding their GPAs for the last year. The results are shown in Table 12.10.

BasketballBaseballHockeyLacrosse
3.62.14.02.0
2.92.62.03.6
2.53.92.63.9
3.33.13.2 2.7
3.83.43.22.5

Table 12.10 GPAs for four sports teams

Use a significance level of 5%, and determine if there is a difference in GPA among the teams.

Example 12.5

A fourth grade class is studying the environment. One of the assignments is to grow bean plants in different soils. Tommy chose to grow his bean plants in soil found outside his classroom mixed with dryer lint. Tara chose to grow her bean plants in potting soil bought at the local nursery. Nick chose to grow his bean plants in soil from his mother's garden. No chemicals were used on the plants, only water. They were grown inside the classroom next to a large window. Each child grew five plants. At the end of the growing period, each plant was measured, producing the data (in inches) in Table 12.11.

Tommy's plantsTara's plantsNick's plants
242523
213127
232322
302030
232820

Table 12.11

Problem

Does it appear that the three media in which the bean plants were grown produce the same mean height? Test at a 3% level of significance.

Solution

This time, we will perform the calculations that lead to the F' statistic. Notice that each group has the same number of plants, so we will use the formula F' = nsx2s2poolednsx2s2pooled .

First, calculate the sample mean and sample variance of each group.

Tommy's plantsTara's plantsNick's plants
Sample mean24.225.424.4
Sample variance11.718.316.3

Table 12.12

Next, calculate the variance of the three group means (Calculate the variance of 24.2, 25.4, and 24.4). Variance of the group means = 0.413 = sx2sx2

Then MSbetween = nsx2nsx2 = (5)(0.413) where n = 5 is the sample size (number of plants each child grew).

Calculate the mean of the three sample variances (Calculate the mean of 11.7, 18.3, and 16.3). Mean of the sample variances = 15.433 = s2 pooled

Then MSwithin = s2pooled = 15.433.

The F statistic (or F ratio) is F=MSbetweenMSwithin=nsx2s2pooled=(5)(0.413)15.433=0.134F=MSbetweenMSwithin=nsx2s2pooled=(5)(0.413)15.433=0.134

The dfs for the numerator = the number of groups – 1 = 3 – 1 = 2.

The dfs for the denominator = the total number of samples – the number of groups = 15 – 3 = 12

The distribution for the test is F2,12 and the F statistic is F = 0.134

The p-value is P(F > 0.134) = 0.8759.

Decision: Since α = 0.03 and the p-value = 0.8759, then you cannot reject H0. (Why?)

Conclusion: With a 3% level of significance, from the sample data, the evidence is not sufficient to conclude that the mean heights of the bean plants are different.

Try It 12.5

Another fourth grader also grew bean plants, but this time in a jelly-like mass. The heights were (in inches) 24, 28, 25, 30, and 32. Do a one-way ANOVA test on the four groups. Are the heights of the bean plants different? Use the same method as shown in Example 12.5.

Notation

The notation for the F distribution is F ~ Fdf(num),df(denom)

where df(num) = dfbetween and df(denom) = dfwithin

The mean for the F distribution is μ=df(num)df(denom)2μ=df(num)df(denom)2

12.3 The F Distribution and the F-Ratio - Introductory Business Statistics 2e | OpenStax (2024)
Top Articles
Latest Posts
Article information

Author: Chrissy Homenick

Last Updated:

Views: 5592

Rating: 4.3 / 5 (54 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Chrissy Homenick

Birthday: 2001-10-22

Address: 611 Kuhn Oval, Feltonbury, NY 02783-3818

Phone: +96619177651654

Job: Mining Representative

Hobby: amateur radio, Sculling, Knife making, Gardening, Watching movies, Gunsmithing, Video gaming

Introduction: My name is Chrissy Homenick, I am a tender, funny, determined, tender, glorious, fancy, enthusiastic person who loves writing and wants to share my knowledge and understanding with you.